
Nonlinear Blood Pattern

Reconstruction

by

Benjamin Thomas Cecchetto

B.Sc., The University of Toronto, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2010

c© Benjamin Thomas Cecchetto 2010



Abstract

We present a method of reconstructing the area of origin for blood droplets

given the position and directions of impact stains. This method works for

nonlinear trajectories, such as parabolic motion or motion with drag.

A model for fitting ellipses to the stains, obtaining impact velocities,

blood drop mass and drag coefficient from blood splatter image densities,

impact angle and pattern is also provided. We also show how to use this

extra data to aid with our estimation.

We validate our method in several experiments involving blood splatters

at varying velocities and angles.
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Chapter 1

Introduction

1.1 Motivation

Forensic science, or forensics, is the practice of using science to gather in-

formation about a crime, or any other event that needs to be considered as

evidence in a legal system. This puzzle often needs to be pieced together

using clues from various sciences such as physics, biology, and chemistry to

extrapolate to events that happened in the past. The information gathered

must be as objective as possible as a safeguard against erroneous deductions.

One subset of forensics is bloodstain pattern analysis (BPA), i.e. gath-

ering information from bloodstains on various surfaces to determine more

about events that unfurled at the crime scene. The blood originates from

a wound of sorts, usually involving a force or trauma to a victim, and ends

up on a surface creating a pattern which can be photographed afterwards.

There are many ways the blood may arrive at its destination. It may impact

the surface after being in freefall after exiting a wound, it may be smeared

from some other object. Sometimes the blood can even leave from one pool

or stain to a new one. There are many different cases of patterns, each with

a different meaning.

One common pattern is blood particles ejected from a wound. The only
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1.1. Motivation

forces acting upon a blood particle are assumed to be gravity and drag. The

shape of the stains are projected spheres onto the recipient surface, which

are ellipses on planar surfaces.
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(a) A blood spatter event originating
from the area of origin
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(b) Given the impact angle and posi-
tions, we need to find the area of origin

Figure 1.1: Problem statement

In Figure 1.1, on the left we see a typical blood spatter event. Blood

particles travel through the air until reaching their destination at a recipient

surface. We can only observe the impact positions and angles after the event

has occured, thus leaving the original emitting position at the time of the

event unknown. We aim to calculate this position.

Traditional techniques for this method involve identifying the angle of

impact and extending that angle into 3D through various methods, assuming

a linear flight path, using physical strings or software. The area of origin

is assumed to lie at the intersection of the flight paths. For this method to

work, all particles must have a high enough velocity for the trajectories to

approximate lines. For high velocity events such as gun spatter, this works

well, but for medium and low velocity events droplets do not generally travel

2



1.2. Scope

in straight lines and are influenced by the force of gravity and drag. Since

the droplets are always accelerating downwards, the tangent of the flight

path at the point of impact curve will be steeper than at the point of origin.

In fact, all of the tangents at the points of impact will be steeper than at

the area of origin and so it is known that the true area of origin will be lower

than the intersection of these tangent lines. However, where exactly is not

certain with the linear approach.

For such a calculation based method, it seems beneficial to automate it

given input data, to more accurately reconstruct the area of origin. We will

discuss how existing methods can be improved upon as they do not take

into account gravity or drag and assume particles travel along straight lines.

We will use computer vision techniques to infer the impact pattern and a

probabalistic formulation to describe a constrained system of equations that

may be solved for. We will also discuss different types of information that

can be obtained from a blood droplet and how that can be used to bound

the problem statement.

1.2 Scope

Correctly deducing what kind of event causes a given blood pattern, usually

requires years of experience. This thesis does not seek to automate such an

approach. However, we are trying to facilitate more automated procedures

supporting experts in their analysis.

There are many patterns that seem intractable to solve, as blood could

have come from any source in the crime scene. We examine one such case

3



1.3. Overview of the Thesis

of pattern, with the goal of accurately estimating the area of origin. Ths is

also known as reconstruction, or directional analysis. This area is where the

emitting wound was at the moment of the event, and leaves behind a very

specific type of pattern. The droplets are assumed to fall under the force of

drag and gravity. We also assume that the blood stain is on an untextured,

planar surface.

1.3 Overview of the Thesis

In Chapter 2 we discuss various previous approaches to the problem of re-

construction. We also discuss their limitations, and cases where they do and

do not perform well. Various related work beneficial to solving the task is

also presented.

Chapter 3 describes the main algorithm to reconstruct an area of origin.

We assume we know the impact positions and directions as input. We derive

the trajectories from Newton’s Laws and proceed to a probabalistic deriva-

tion, solving for a probability density function (PDF), or where a particle

may in space be at a given time. From there we show how to construct this

PDF for a whole trajectory, then use it for multiple trajectories to bound

the search space with and without apriori knowledge of velocities. We also

discuss an error bound on the estimate and in what situations it performs

well or performs poorly.

In order to perform the reconstruction, we need to obtain stain positions

and other parameters. We discuss various ways of doing so in Chapter 4.

We begin by describing segmentation and ellipse fitting to obtain the impact

4



1.3. Overview of the Thesis

angle as done by traditional blood pattern analysts. We go on to describing

how to estimate the velocity, drag and mass parameters of a given droplet

to aid with bounding the reconstruction space. Some results may need to be

pruned or modified as they are noisy. We discuss how to prune our results

using RANSAC and flipping directions on ellipses (since they are symmetric

entities) as they may be ambiguous.

Validation is performed for various claims in Chapter 5. A simple blood

droplet experiment validates some claims stated in Chapter 4, and various

real life scenarios of spatter events are also performed to show where our

reconstruction algorithm from Chapter 3 performs well and where it fails.

We finish by discussing limitations of the algorithms presented here in

Chapter 6. We also talk about where the works presented here may be

added onto, or future work with this project.

5



Chapter 2

Literature Review

In this chapter, we will discuss all various related work either in traditional

methods, existing automatic methods, or computer graphics and vision

works related to ours. Existing methods for manual or traditional blood

pattern analysis (BPA) are discussed in Section 2.1. Automatic BPA tech-

niques will be discussed in Section 2.2. This includes the assumptions they

make and what scenarios their algorithms perform well or terribly on.

2.1 Traditional Blood Pattern Analysis

A good resource which serves to introduce BPA is Blood Dynamics by A.

Wonder [18]. This book describes various logical processes and how to de-

duce accurate facts from a crime scene, as well as the basic linear recon-

struction techniques. A newer book on the matter [1] covers more modern

techniques as well as the traditional ones. For example, it covers virtual

stringing which we will discuss later. Good supplements to this work are [8]

and [19], which focus more on case studies from various scenes. This shows

a large number of various crime scenes and what type of blood patterns to

expect in the real world.

Various BPA tools are presented in [1] using various flowchart diagrams

6



2.1. Traditional Blood Pattern Analysis

to deduce the order of events. Also presented are techniques for BPA re-

construction such as the stringing method, otherwise known as the tan-

gent method. The tangent method utilizes the fact that the blood particles

project onto the surface forming an elliptical stain upon impact, followed by

secondary shapes. In order to perform this method, strings are run along

the major axis of each particle’s impact ellipse. These lines converge if the

scene obeys the assumptions above. Let us say they converge at a point

on the ground plane (the xy plane), Pxy. Obtaining the direction outside

the plane can be determined by comparing the ellipse major and minor axis

length (L and W respectively), to obtain the impact angle θ

sin(θ) =
W

L
. (2.1)

Geometrically, this can be seen in Figure 2.1. In Figure 2.1a, a sphere is

projected onto a plane with angle θ. This leaves an ellipse with minor axis

width W and major axis length L as seen more easily in Figure 2.1b. The

extended portion of the bloodstain is called a satellite stain which we will

discuss in Chapter 4.

A tripod, or some other mounting structure is then placed at the point on

the plane Pxy. Knowing the angle for each droplet, we connect a string from

each droplet to the tripod so that the angle made by this string and the plane

is the impact angle θ. The area of origin is an average of all these points

connected to the tripod, which obtains the height of the area of origin z.

Using the planar point Pxy with the height z as the third component we form

Pxyz. We see this in Figure 2.2. The dotted black lines correspond to the

7



2.1. Traditional Blood Pattern Analysis

W

L

θ

(a) Planar projection of a sphere

L

W

(b) Parameters of an ellipse

Figure 2.1: Obtaining a particle’s direction from a stain.

strings on the plane and the white lines correspond to the strings attached

to the tripod, which represent the linear flight paths for each droplet.

Pxy

Pxyz

Figure 2.2: The stringing method

There have been other studies related to traditional BPA, such as [15]

where the accuracy of the linear method was studied with varying hematocrit

values in the blood. Hematocrit is the ratio of white to red blood cells,

changing the dynamic properties and colour of the blood. It was shown that

8



2.2. Automatic Blood Pattern Analysis

there was very little change in the error estimates while varying these values.

2.2 Automatic Blood Pattern Analysis

There exists commercial software to accomplish virtual stringing. The most

common program in use is BackTrack [4]. A user inputs blood stain ellipses,

absolute angles of the ellipses relative to the wall, and positions in 3D space.

The program facilitates this process by letting the user interactively move an

ellipse to fit selected stains. The program then computes a linear estimate

of where the area of origin is. This method is akin to the stringing method

described above, but performed on a computer and potentially more accu-

rately. However, the software is limited in that it only works for axis aligned

walls, ceiling and floor. Also, the user still has to enter a large amount of

data for input.

Evaluations of this program have been done, comparing it to the string-

ing method [5] and concluding that it is a reasonably accurate method for

most results. For specific results where gravity is a key factor in the trajec-

tories, a different evaluation [12] concludes that even though the software

can calculate the horizontal plane coordinates accurately, the height coordi-

nate has to be approached with caution as an estimate is only accurate as

an upper bound.

Some attempts to describe a full system for BPA reconstructions have

also been performed. Shen et al. [16] describe an outline of various computer

vision techniques as applied to BPA. They attempt basic ellipse fitting to

masks, pruning ellipses with significant deviations in direction. They also

9



2.2. Automatic Blood Pattern Analysis

explore rectifying images using a checkerboard calibration grid. They claim

to obtain the area of origin, though no error results are provided for the

fully reconstructed result.

There is also a more recent paper [2] describing an ellipse fitting tech-

nique specifically designed for blood droplet analysis. This algorithm iden-

tifies the blood based on statistics about blood colour, and segments it from

a white background, approximating it with an ellipse. It then inscribes the

ellipse in a rectangle to determine the major axis of the ellipse. They obtain

approximately 10% error in direction, using tests on 30 ellipses. Another

automatic approach fits homographies from coplanar ellipses from one image

to another to infer information about the scene [20]. Although useful for

mapping images from one to another, their reconstructed results as applied

to BPA are far from accurate. Results from 2 experiments were shown with

errors of 35 and 67 inches. Which is a significant error, as it may place the

estimated area of origin a few feet away from the actual event. For context,

in [5], they state 10-20cm (or 4-8 inches) is close enough to the true blood

source location to allow an accurate interpreteation of the crime.

There have been portable technologies to scan a crime scene more accu-

rately as well, such as the DeltaSphere 3000 [7]. The DeltaSphere obtains

a dense model of the scene using a laser range scanner. It also captures

colour at the sampled points. There has also been a case study investigat-

ing the usefulness of virtual crime scene environments [14]. It concludes that

creation of an interactive virtual environment of a crime scene to be very

useful and of significant importance to data analysis, witness statement eval-

uation, route visualisation, officer briefing, hypothesis evaluation, training

10



2.2. Automatic Blood Pattern Analysis

and security planning.

11



Chapter 3

Area of Origin

Reconstruction

In this chapter we will derive a probabalistic formulation for trajectory re-

construction. We will begin by deriving what trajectory or path a particle

may have from Newton’s laws in Section 3.1. We do so first assuming no

drag, then show a derivation with drag taking a similar approach. In Sec-

tion 3.2, we discuss how knowing an analytical solution for the trajectories

can help us know the path it took to get to that point. Section 3.3 we discuss

how to create probability density functions (PDFs) for various trajectories

and scenarios, showing where they are likely to be prior to impact. In Sec-

tion 3.4 we describe how to obtain the 3D PDF from the 2D formulations

and maximum likelihood estimate for the area of origin in 3D. Finally, in

Section 3.5 we will discuss an error bound in order to ensure knowledge of

the accuracy of the reconstruction results for a given scenario.

3.1 3D Projectile Motion

If we are to understand how to reconstruct a particle’s trajectory based

on the resultant impact site, we begin with a mathematical model of the

12



3.1. 3D Projectile Motion

trajectory based on particular assumptions.

3.1.1 Newtonian Derivation for a Parabolic Trajectory

Projectile motion is one of the most basic type of physical motion where

objects fall only under the effects of gravity. We assume here that there is

no air resistance. Newton’s laws state that the net force FNET on an object

is related to the mass m and acceleration a by the equation

FNET = ma, (3.1)

where FNET is the sum of all forces on an object. If we draw a free body

diagram for the object of interest, we can identify these forces visually.

Fg

Figure 3.1: A free body diagram of the forces acting upon a particle

The only force is that of gravity, denoted Fg. This force can be described

by the equation

Fg = mg, (3.2)

where g = (0, 0,−g) is the 3D acceleration vector of gravity with g =

9.81m/s2. For particles only being affected by gravity the spatial motion is

13



3.1. 3D Projectile Motion

parabolic.

Integrating a = g with respect to time t, since gravity is the only force

we arrive at

v(t) = gt + v0, (3.3)

where v0 is the initial velocity. Integrating again and introducing initial

position x0, we obtain the analytical description of trajectory

x(t) =
1

2
gt2 + v0t + x0. (3.4)

From this equation we can see that the trajectory is parabolic in motion.

This is illustrated in Figure 3.2. This equation holds for all particles falling

under gravity, they all fall with the same acceleration.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

x

z

Figure 3.2: A parabolic trajectory

3.1.2 Newtonian Derivation for Trajectory with Drag Force

Thus far for simplicity we have overlooked a key force, the drag force or air

resistance. It is denoted as Fd. Incorporating it into the derivation yields

14



3.1. 3D Projectile Motion

a much more complicated expression where the resulting trajectory starts

parabolic in nature but turns linear as the particle approaches its terminal

velocity, as we will show.

Let us begin by drawing the free body diagram of the particle, this time

taking into account the force of air resistance.

Fg

Fd
v

Figure 3.3: A free body diagram of a particle falling under the influence of
gravity, with drag force

The drag force, and thus terminal velocity, vary for different particles

in the scene depending on their size and shape. Stokes’ Law applies for

spherical objects in a fluid with low Reynold’s numbers, and we will assume

our objects are spherical in nature. This law states the drag force as

‖Fd‖ = 6πµr‖v‖, (3.5)

where µ is the dynamic viscosity of the fluid, which for air is 1.78×10−5 kg
m·s ,

and v is the particle velocity. The law also states that this force is in the

opposite direction of the velocity, so we can simplify the drag force as

Fd = −6πµrv. (3.6)

15



3.1. 3D Projectile Motion

If we combine all the constants into one term k, we can write

Fd = −kv, (3.7)

where

k = 6πµr. (3.8)

Now that we know how both forces Fd and Fg can be described as, from

Newton’s law in Equation 3.1,

Fg + Fd = ma (3.9)

⇒ mg − kv = ma . (3.10)

We wish to integrate this equation, so we will separate the appropriate

parts using a substitution a = dv
dt

. Also, for simplicity, we will drop the

vector notation and assume we are only working with one component of

the vector at a time, e.g. gx instead of g. We can do this since x and y are

independent as we are only dealing with linear or component-wise operators.

mgx − kvx = m
dvx

dt
, (3.11)

⇒ dt = m
dvx

mgx − kvx
, (3.12)

16



3.1. 3D Projectile Motion

which is now in a form to integrate and simplify to obtain the velocity,

∫
dt =

∫
m

dvx

mgx − kvx
(3.13)

⇒ t + C1 = −
m

k
ln|mgx − kvx| (3.14)

⇒ et+C1 = (mgx − kvx)−
m

k (3.15)

⇒ (et+C1)−
k

m = mgx − kvx (3.16)

⇒ kvx = mgx − e(t+C1)(− k

m
) (3.17)

⇒ vx =
1

k
(mgx − C3e

− kt

m ). (3.18)

If we do this for each component, we obtain the equation

v =
1

k
(mg − C3e

− kt

m ), (3.19)

where the constant C3 is different for each component. With initial condi-

tions v(t) = v0 for t = 0, we can write

v(0) = v0 =
1

k
(mg + C3) (3.20)

⇒ C3 = v0k − mg. (3.21)

Substituting back in, we obtain the velocity equation,

v(t) =
mg

k
+ (v0 −

mg

k
)e−

kt

m . (3.22)

Analyzing this, we can obtain the terminal velocity v∞ as the limit when

17



3.1. 3D Projectile Motion

time approaches infinity,

v∞ = lim
t→∞

v(t) (3.23)

⇒ = lim
t→∞

[
mg

k
+ (v0 −

mg

k
)e−

kt

m ] (3.24)

⇒ =
mg

k
. (3.25)

Let us refer to this as the terminal velocity equation,

v∞ =
mg

k
. (3.26)

We integrate the velocity equation 3.22 once more to obtain the trajec-

tory,

x(t) =

∫
mg

k
+ (v0 −

mg

k
)e−

kt

m dt (3.27)

⇒ x(t) =
mg

k
t −

m

k
(v0 −

mg

k
)e−

kt

m + C4. (3.28)

To solve for C4, we impose the initial conditions again that x(t0) = x0

at time t = 0,

x0 =
mg

k
t0 −

m

k
(v0 −

mg

k
)e−

kt0

m + C4, (3.29)

⇒ x0 = 0 −
m

k
(v0 −

mg

k
)(1) + C4, (3.30)

⇒ C4 = x0 +
m

k
(v0 −

mg

k
) . (3.31)

18



3.2. Inverse Dynamics

Substituting C4 back in, we obtain the equation

x(t) =
mg

k
t −

m

k
(v0 −

mg

k
)e−

kt

m +
m

k
(v0 −

mg

k
) + x0. (3.32)

However, if we substitute the terminal velocity, this yields the drag tra-

jectory equation.

x(t) = v∞t +
m

k
(v0 − v∞)(1 − e−

kt

m ) + x0. (3.33)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

z

Figure 3.4: The trajectory of a particle with drag. Different red paths corre-
spond to different drag constants, k, with the same mass, m.

We now have an analytic description for the particle flight paths. They

will all start with a curved motion and settle on a linear trajectory after

enough time has ellapsed.

3.2 Inverse Dynamics

Now that we have the formulation for simple trajectories (Equation 3.4)

as well as those involving a drag force (Equation 3.33), we investigate how
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3.2. Inverse Dynamics

to solve these equations in reverse given all the parameters to describe the

motion. We will denote each variable specific to time of impact tI the

position xI = x(tI) and velocity vI = v(tI). We assume we know the drag

coefficient, the mass of the object, and gravity.

Let us assume we know the parameters k, m, in the terminal velocity

equation 3.26. A basic test to see if a particle yields enough information

to reconstruct accurately would be to see if the impact velocity is below

this speed. There are two cases why particles approaching terminal velocity

are ill-conditioned. The first case is if a particle is travelling at terminal

velocity, the net force is zero and so the particle moves at a uniform speed.

This forms a line in space. If the particle then impacts a surface along this

line, since the speed is uniform along this line, the impact will look the same

no matter where along this line. Since there is no information in how long

the line is, we cannot reconstruct the full trajectory.

The second case is due to the directional ambiguity. In the first case, we

may at least obtain a direction in the ground plane as to where it was com-

ing from. However, it is also known when one of the particles has reached

terminal velocity, the xy component of its velocity is zero. This is true be-

cause v∞ = mg

k
and g has zero for its first two components. Essentially, the

terminal velocity can also be written as (0, 0,−mg
k

). The reconstructed path

for this would be pointing straight up and yields no xy planar information.

As it approaches the terminal velocity it may be within our measurement

error, and so the problem becomes ill-conditionned.

Supposing the velocity of the particle is below the terminal velocity,

we know also some boundary conditions for the position of impact xI and
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3.3. 2D Probability Density Function Formulations

velocity of impact vI at the time of impact tI which we can define to be

tI = 0. We can then solve for the trajectory at any point in time before this

point using the trajectory equation 3.33.

3.3 2D Probability Density Function

Formulations

In this section, we will derive different probability density functions (PDFs)

for various scenarios. In particular, Section 3.3.1 derives a 2D PDF for

a particle undergoing parabolic motion and in Section 3.3.2 we go on to

describe how to obtain the 2D PDF for a particle undergoing ballistic motion

with drag force applied. For both of these, we assume we know the impact

angles, positions and speeds. Additionally, for the drag formulation we also

assume we know the mass and drag coefficient of the particle.

Section 3.3.3 describes how we can use many of the 2D trajectory PDFs

for different impact sites to a single 2D PDF for the area of origin, which

assumes we know impact angles and positions along with the speeds still.

Section 3.3.4 describes how to obtain the same 2D PDF for the area of

origin without knowing the speed at each impact site, essentially reducing

the problem to only needing to know the impact positions and directions of

impact.

More intuitively, we can see the modularity of our algorithm with known

and unknown inputs. All the PDFs require at least impact angles and

directions at each impact site.

There are two major decisions concerning which PDF to use. The first
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3.3. 2D Probability Density Function Formulations

is knowledge of the impact speed and the second is knowledge of the drag

parameters k and m. If we do not know the impact speed, we show in

Section 3.3.4 how we can iterate over various impact speeds to obtain a

good area of origin estimate given some assumptions. If we do know the

impact speeds for every impact site, we can simply use the area of origin

estimate as described in Section 3.3.3. These two methods can use either

the parabolic or drag equations of projectile motion.

If we know the drag parameters, we can use the drag trajectory equation

to reconstruct the main path and PDF as in Section 3.3.2 and if we do

not we can revert to using the parabolic motion equation as described in

Section 3.3.1.

3.3.1 A Single Particle with Parabolic Trajectory

In the previous section, we have shown how to analytically solve for the

trajectory starting at the impact position xI . Now we will solve for an

approximate solution encoding errors in the impact variables, which will be

the ones that shall be measured. This will show us, at a time t where the

particle may have come from.

For this first derivation, we shall restrict ourselves to reconstructing the

simple parabolic trajectory described by Equation 3.4. We do this to show

how to reconstruct accurately the area of origin with only knowing the im-

pact positions and velocities, and not the mass and drag coefficient of the

particle. Let us consider the 2D Cartesian Plane with z representing vertical

height, and x representing horizontal distance.

Since parabolas are symmetric, we can obtain the same flight path by
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3.3. 2D Probability Density Function Formulations

firing a projectile from the same impact position with the same velocity as

the impact velocity. For simplicity, let the impact position be x0 = (0, 0)

with impact speed v0 and angle θ. These parameters will be the position

and velocity of impact xI and vI for each measured stain. We will denote

this main reconstruction path as,

cm(t) = (xm(t), zm(t)). (3.34)

That is to say:

xm(t) = v0 cos(θ)t (3.35)

and zm(t) = v0 sin(θ)t −
1

2
gt2. (3.36)

Let now us consider projectile fired at a slightly different angle θ+ δθ for

some small positive or negative δθ as well as a slightly different initial speed

δv. This then yields a new path as a function of small perturbations in the

angle and initial speed:

cδ(t, δθ, δv) = (xδ(t, δθ, δv), zδ(t, δθ, δv)) (3.37)

Where,

xδ(t, δθ, δv) = (v0 + δv) cos(θ + δθ)t (3.38)

and, zδ(t, δθ, δv) = (v0 + δv) sin(θ + δθ)t −
1

2
gt2 . (3.39)

We can also consider this path cδ(t, δθ, δv) relative to the known recon-
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3.3. 2D Probability Density Function Formulations

structed trajectory cm(t) with the equation

cδ(t, δθ, δv) = p(t, δθ, δv) + cm(t), (3.40)

where p(t, δθ, δv) is a perturbation vector from the main path varying over

time. We can solve for p(t, δθ, δv) by rearranging Equation 3.40,

p = cδ − cm. (3.41)

We can solve for this perturbation vector p(t, δθ, δv) = (xp(t, δθ, δv), zp(t, δθ, δv))

as follows,

xp = xδ − xm (3.42)

⇒ = (v0 + δv) cos(θ + δθ)t − v0 cos(θ)t (3.43)

⇒ = t((v0 + δv) cos(θ + δθ) − v0 cos(θ)) (3.44)

and, zp = zδ − zm (3.45)

⇒ = (v0 + δv) sin(θ + δθ)t −
1

2
gt2 − v0 sin(θ)t +

1

2
gt2 (3.46)

⇒ = t((v0 + δv) sin(θ + δθ) − v0 sin(θ)). (3.47)

We then obtain

p(t, δθ, δv) = (xp(t, δθ, δv), zp(t, δθ, δv)),

with xp(t, δθ, δv) = t((v0 + δv) cos(θ + δθ) − v0 cos(θ)),

and, zp(t, δθ, δv) = t((v0 + δv) sin(θ + δθ) − v0 sin(θ)).

(3.48)
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3.3. 2D Probability Density Function Formulations

The equation for the relative vector from the main path to a perturbed

path is given by the above equation. This can be seen in Figure 3.5.

p(t)

c  (t)m

c  (t)δ

Figure 3.5: Formulation of main path cm, perturbed path cδ and perturbation
vector p.

Now, let us examine the magnitude of this perturbation vector. There

is a common t term in both x and y components, and this scales linearly

over time. We can see this effect in Figure 3.6. We see a progression of

neighbouring particles, i.e. particles fired with some perturbation and/or

angle.

If we wish to reconstruct a particle’s past trajectory by a single path,

then the error in reconstruction scales linearly in the amount of time back-

ward. However, if we know the distribution of the error in our angle and

speed measurements then we can create a 2D probability density function

representing this data.

We assume normally distributed noise in both the angle and speed mea-

surements. This forms a mean zero 2D Gaussian with standard deviations

σθ and σv in the angle and speed respectively. At a given time t, a prob-

ability for the position can be created by warping this 2D Gaussian to 2D
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Figure 3.6: Trajectories of nearby perturbations over time in the xz plane.

world space, centered at cm. The warp is a circular warp described in

Equation 3.48 and illustrated in Figure 3.7. For simplicity and computation

expense, we approximate this by a 2D Gaussian.

We now need to compute the covariance matrix for this distribution.

We approximate this by a uniform Gaussian distribution. We just need

a standard deviation for this multiple of the identity matrix. Let σθ and

σv be the standard deviations for the error in the angle and impact speed

respectively. The covariance matrix for this distribution will be defined
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3.3. 2D Probability Density Function Formulations

Figure 3.7: Circular warp of the Gaussian distribution

with the help of the norm of the perturbation vector equation 3.48 with

these input arguments

COV (t, σθ, σv) = ‖maxpθ∈{−σθ,σθ},pv∈{−σv ,σv}p(t, pθ, pv)‖I, (3.49)

where I is the identity matrix.

An example of this Gaussian can be seen in Figure 3.8. Notice the

scale changing over time. This also means the further we are from the

source, the less probable it is that the particle will be at that point along

the reconstructed path.
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Figure 3.8: Probabilities for a given instant in time

This is fine for one point in time, however we want to know what the
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3.3. 2D Probability Density Function Formulations

probability is over the space for all points in time. We thus integrate over

time. Let our 2D normal distribution be N with mean cm(t) and covariance

matrix COV (t, σθ, σv).

It should be noted that the xI and vI are parameters to both the co-

variance matrix as well as the main reconstruction path. They provide the

initial conditions for the reconstruction path. For clarity of notation we

omit them from the equations.

P =

∫

t∈[tI−tE ,tI ]

N (cm(t), COV (t, σθ, σv)) dt, (3.50)

where tE is how far back in time we are interested in. This forms a PDF

which denotes the probability of a particle being at a given point in space

in some known time interval. This is illustrated in Figure 3.9.

(a) (b) (c)

Figure 3.9: Probability densities for different reconstructed paths

This section has been derived for objects without a drag force. We can

take a similar approach to derive the probability density function for ones

with drag force, or just change the main path cm to the one in Equation 3.33,

while keeping the covariance matrix for the probabilities the same as for the

simple projectile motion.
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3.3.2 A Single Particle with Drag Force Trajectory

In Section 3.3.1, we derived a probability density function for particles un-

dergoing parabolic motion. We want to do the same thing for particles

undergoing motion with drag forces applied. We will now assume we can

obtain the parameters for each particle describing the drag coefficient k, and

mass of the object m.

We will take a similar approach as in Section 3.3.1 to obtain the PDF for

drag trajectories by estimating the Gaussian distribution at a time t. Since

we described how to reconstruct the motion given an endpoint in Section 3.2,

we know this Gaussian distribution should have a mean cm(t,xI ,vI , m, k),

which is the reconstruction path given by the drag trajectory equation 3.33

and looking in the negative axis of time. Now we seek to obtain the co-

variance matrix COV (t, σθ, σv). We will use the same definition as in the

covariance equation 3.49, which uses the perturbation vector.

We will now derive the perturbation vector for trajectories undergoing

drag. To define the perturbation vector we must first state the perturbed

path for a trajectory with drag. Unlike the case of parabolic motion, it

is not symmetric about the gravity vector. However, like with the case of

inverse dynamics let us fix a boundary value at the time of impact and work

backwards in time before this.

From the drag equation 3.33, a trajectory with drag force has the form

x(t) = v∞t +
m

k
(v0 − v∞)(1 − e−

kt

m ) + x0. (3.51)

However, if we are interested in reconstruction path, we can let time be
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negative, and so we obtain the main path

cm(t) =
m

k
(v0 − v∞)(1 − e

kt

m ) − v∞t + x0. (3.52)

Now we want to know what a perturbed reconstruction path would look

like, so we let v0δ = (v0 + δv)(cos(θ + δθ), sin(theta+ δθ)). Substituting that

into Equation 3.52, we get the perturbed path equation for drag trajectories,

cδ(t, δθ, δv) =
m

k
(v0δ − v∞)(1 − e

kt

m ) − v∞t + x0. (3.53)

Now to obtain the perturbation vector, which defines the covariance

matrix, we subtract the perturbation path from the main path,

p(t, δθ, δv) = cδ − cm (3.54)

⇒ =

m

k
(v0δ − v∞)(1 − e

kt

m ) − v∞t + x0−

m

k
(v0 − v∞)(1 − e

kt

m ) + v∞t − x0

(3.55)

⇒ =
m

k
(1 − e

kt

m )(v0δ − v0). (3.56)

Expanding, this gives us the perturbation vector equations for trajecto-
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ries with drag,

p(t, δθ, δv) = (xp(t, δθ, δv), zp(t, δθ, δv)),

with xp(t, δθ, δv) =
m

k
(1 − e

kt

m )((v0 + δv) cos(θ + δθ) − v0 cos(θ)),

and, zp(t, δθ, δv) =
m

k
(1 − e

kt

m )((v0 + δv) sin(θ + δθ) − v0 sin(θ)).

(3.57)

Looking at the magnitude of this, we see the exact same shape factor

as before, coming from v0δ − v0. This initial shape is scaled by m
k

as well,

which was not present in the initial shape of the parabolic trajectory as

drag was not present. We also have a new scaling factor with time, in both

components (1 − e
kt

m ) as opposed to linearly in the parabolic case. That

means, to compute the PDF for the drag trajectory we simply need to scale

the Gaussian approximations initially by m
k

and over time with (1 − e
kt

m ).

The circular warp is the same as in Section 3.3.1.

3.3.3 Area of Origin PDF Given Velocities

In the previous section we have created a probabalistic model of where a

particle may be for all times in a given space. The highest probability is

near the measured point. However, we wish to find the area of origin, or

where it is likely to be for all points. We assume that all particles are

independent observations from the same source, and therefore multiply all

the values together for all particles.

Suppose we have a 2D probability density function for each impact par-

ticle denoted Pi for the ith point. The input to these PDFs are known
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estimates for the position xi
I and velocity vi

I at the time of impact. To

obtain the area of origin PDF, denoted PAOO, we multiply all the Pi to find

a common likely area all the particles will have been through,

PAOO =
∏

i

Pi. (3.58)

(a) (b)

(c) (d)

Figure 3.10: Multiplied probabilities for 1, 2, 4, 21 different particles respec-
tively.

In Figure 3.10, we see the two probability density functions from the

previous section multiplied together. This tells us where the two regions
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agree. The lighter colours indicate more probable areas for the particles to

have both come from. If we do this for more and more particle probabilities,

we converge on a more likely solution for the area of origin.

3.3.4 Area of Origin PDF Without Velocites

The previous section works works assuming one knows the impact velocities

with error in measurement for each particle. Although velocities may be

estimated from the impact sites, some impacts only allow us to measure

direction. We now show how to estimate the area of origin for impacts

without a velocity measurement.
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Figure 3.11: We sample different impact speeds. One speed defines the shape
of all the parabolas, as we constrain them to have the same initial speed.
Shown in Figure 3.11a is a very low speed. Note that the parabolas do not
converge on a unique solution. We increase the speeds in Figure 3.11b and
note that more of the parabolas converge. In Figure 3.11c most of the parabo-
las converge at a single point which would be our area of origin estimate for
this particular velocity.

We introduce a constraint where all the impact speeds should be equal

for a given scenario. We may do this as we expect the velocites to be similar

as the same initial kinetic energy was added and at this time the particles

had the same potential energy. An example of how the paths may converge
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3.4. Calculating the 3D Area of Origin

while uniformly increasing the speed is illustrated in Figure 3.11.

Suppose the approximate speed for all the particles is in an interval

S = [sstart, send]. Then we look at the maximum likelihood over all these

speeds by again taking the max over all the frames

Pv =

∫

s∈S

PAOO(s)ds. (3.59)

The area of origin should lie where this new density function Pv is maximal,

otherwise known as the maximum likelihood estimate (MLE). An example

of this PDF can be seen in Figure 3.12.

3.4 Calculating the 3D Area of Origin

So far all of the PDFs have been for the 2D case. If we want to use this for

the 3D case, we can simply project onto the xz-plane and yz-plane. If we

want to know what this probability distribution is in 3D we can multiply

the values of the two perpendicular planes at different voxel values, then

solve for the MLE in this 3D space. If we have the xz PDF defined as

πxz = PV (xxz
I ,vxz

I ), (3.60)

where xxz
I and vxz

I are the x and z components of the impact positions and

angles respectively. Similarly the yz PDF defined as

πyz = PV (xyz
I ,vyz

I ), (3.61)
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(a) (b)

(c) (d)

Figure 3.12: Summed Probabilities for: 1, 4, 9, and 12 different velocities
respectively.

for the y and z components. Then we can write the 3D PDF as

P3D(x, y, z) = πxz(x, z)πyz(y, z). (3.62)

The assumed solution to the area of origin is most likely region that all

particles have passed through at some point in time. This solution is defined
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as a maximum likelihood estimate solving for xA, and is written as

xA = (xA, yA, zA) = arg max
(x,y,z)

P3D(x, y, z). (3.63)

3.5 Error Bound on Linear Estimate

In this section we will discuss conditions needed for which the algorithm to

work well. Consider the 2D xy plane, where gravity has no effect on the

particles in question. Suppose we have two different scenarios, each where

we obtain three impact sites with the same measuremnt error but different

positions. In scenario 1, we shall have the three impact sites arranged close

together and in scenario 2 they are spread out equidistantly over a circle.

This can be seen in Figure 3.13.

The blue lines are the estimated trajectories, the red lines are the actual

trajectories. The black dots are the impact site locations and the red dot

is the area of origin. We can see that if we were to minimize the distance

between the three lines for each scenario, it would be located somewhere

in the blue region. This estimation of the origin is obviously more well

constrained in the second scenario.

If we have more estimates from the same area in scenario 1 then our

estimate for the area of origin will not improve. If we have more estimates

in scenario 2, in a different place on the circle then our estimate for the AOE

will improve. If we use our probabalistic framework, we this is the case in

Figure 3.14. In the first and second images, we have the PDFs for two

particles that are close in position. In the third image we multiply them to
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3.5. Error Bound on Linear Estimate

(a) Impact sites close together (b) Impact sites spread out

Figure 3.13: The effect of position on reconstruction error. The green circle
is where the reconstructed area of origin is. The actual area of origin is in
the centre of the large circle. With added noise and sparse positions, the
bounded error is closer to the actual area of origin.

obtain a PDF and estimate of where the area of origin is. The actual area of

origin is around the middle of the image, but the highest likelihood estimate

is near the two particles, which is clearly false. More estimates from this area

will not constrain the system any better. In the linear case, this is simply an

illconditioned system, as the lines are collinear within measurement error.

Let us examine what would better condition our system, and a bound

for the error estimate. If we have sites uniformly spread out over a circle of

radius d from the area of origin, and have an error angle δθ, then the error

will be

ǫ = d sin(δθ), (3.64)
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3.5. Error Bound on Linear Estimate

(a) PDF for particle A (b) PDF for particle B (c) PDF obtained by multi-
plying those of A and B

Figure 3.14: An ill-conditionned scenario

where ǫ is the distance from the area of origin to the ray created with angle

δθ.

We can consider this error for a circular region around the area of origin.

If we have points that are closer to the area of origin, they will more accu-

rately inform us where the center is. This is true as it scales with distance

from the center, d. However, one should exercise caution because although

the impact angle may be estimated to within a few degrees, the direction of

the impact site near the AOE will be more vertical and unstable.
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Chapter 4

Bloodstain Analysis

In Chapter 3, we derived a probabalistic estimation for the inverse trajec-

tory. We went from impact angles and positions to a PDF denoting the

likely areas the particle to have come from. In this section, we describe a

methodology to go from images to the desired angles and positions to be

used in our reconstruction approach in the previous chapter. We begin with

a review of previous techniques and general observations about the stains in

Section 4.1. In section 4.3, we describe an approach to fit ellipses to stains

in the image. This is important to do accurately as this is going to ensure a

good reconstruction estimate. Section 4.4 describes a method of obtaining

blood droplet parameters from the images. This step is necessary if we want

to use the drag equation 3.33 for inverse dynamics computation.

Even though we have obtained ellipse estimates, we need to compute

the direction of impact from this. We thus describe a way to ensure all the

reconstructed directions are consistent in Section 4.5. If we wish to bound

the problem more significantly, it is very important to get an estimate for

the average velocity of all the droplets or velocities on a per droplet basis.

We show how to do this in Sections 4.6 and 4.7. Lastly, given a series of

impact angles with associated positions, we show how to prune the outlier
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4.1. Blood Droplet Shape

droplets using RANSAC in Section 4.8.

4.1 Blood Droplet Shape

Now that we know generally what the trajectory of the droplet should look

like, it will also help us to know what the shape of the droplet is so we know

what to expect from a droplet in the air given the impact stain.

In [18] we learn that blood is a liquid with high surface tension force,

and thus in midair it will force itself into a sphere very quickly. Initially,

there will be oscillations but it will settle into a sphere after a very small

amount of time.

Since the droplets are all spheres, by time they reach a moment of impact

they will have an initial impact shape of approximately an ellipse, since the

projection of a sphere onto a 2D surface is an ellipse. Since the blood is free

to move after that initial impact, it may move into what is called satellite

splatters. These spatters may compliment the ellipse spatter, or may not

exist at all if the blood is wholly contained in the ellipse. This is illustrated

in Figure 4.1.

Figure 4.1: An example cow blood stain, with satellite spatters
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4.1. Blood Droplet Shape

We will now consider the effect of different impact speeds on the shape

of the stain. Suppose we have two identical droplets, but one impacting

at a higher velocity. Their stains will be different, the stain of the droplet

with the higher velocity will be larger, and less dense in terms of colour

than the one with lower velocity. This is because the increase in energy will

push the fluid particles outwards with more force to overcome the surface

tension force moreso than its lower velocity counterpart. This can be seen

in Figure 4.2.

Figure 4.2: Cow blood droplets as speed of impact is varied

Also, let us compare the result of the same droplet, with exact same

velocities but falling on the surface at different angles. The droplet with the

higher angle will have a stain that is more elliptical, but with a larger surface

area. This is true since it will always have the same radius and thus minor

axis, but different major axis length. This effect can be seen in Figure 4.3.
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4.2. Obtaining A Mask of the Stains

Figure 4.3: Cow blood droplets as angle of impact is varied

We use this information in the next few sections, but will note that there

is always an ellipse present in the stains even while varying all the impact

parameters.

4.2 Obtaining A Mask of the Stains

We obtain a mask of the stains to perform ellipse fitting on, as well as

to label different connected components to separate stains. We have tried

different masks, including some dependent on the absorption coefficients of

blood, however the best resultant mask used was by thresholding the blue

channel. The blood absorbs most of the green and blue colours, leaving it

with a red appearance. The blue channel had better contrast than the green

channel which made it easier to threshold so we used it instead of the green.

Once we performed this threshold, we are left with a mask. To work with

stains separately, we consider the ones that are disjoint in the mask. That

is to say we obtain a labeling for each connected component in the mask.

The mask and connected component label are both shown in Figure 4.4,
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4.3. Ellipse Fitting

(a) Masked Stains (b) Different labeled stains

Figure 4.4: The result of masking bloodstain images

4.3 Ellipse Fitting

In the computer vision community there are various methods of fitting el-

lipses ranging in complexity from a direct least squares fitting [10], to a

multi-population genetic algorithm that evolves ellipse parameters over time

[21]. In BPA reconstruction, fitting ellipses is key to obtain the impact di-

rections for each stain.

For bloodstains, especially low and medium velocity stains, we provide

a new approach to robustly detect ellipses of the bloodshop variety. Our

method is robust and can handle many satellite stains. We find the maxi-

mum convex region of the droplet and perform a standard ellipse detection

algorithm edges on the boundary of that convex region. We ignore the parts

of the ellipse outside this region, which is notably the satellite stains.

First we assume we are given a binary mask M (with elements either

true or false) of the stain in question. We perform a distance transform on

this mask to find the region with largest inscribed circle (which is assumed
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4.3. Ellipse Fitting

to be inside the ellipse region). We now consider all pixels that are visible to

this circle, the ones that are not visible get set to false, creating a visibility

mask. This is performed by casting rays from points on the circle and the

ones that leave the mask are not visible. This is referred to as a visibility

test.

This utilizes a definition for convex regions, that all points in the convex

region must be visible to all other points in the same region. We sample

many points from a region we assume to be in the convex area of the mask

to prune out regions we know not to be part of the convex region. The

pixels in this visibility mask that correspond to edges in the original mask

should be part of the main ellipse as they were visible to a large portion of

the convex region.
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4.3. Ellipse Fitting

(a) Unprocessed Cow Blood Stain (b) Stain Masked

(c) Stain Visibility Test - 1 point (d) Stain Visibility Test - 5 points

Figure 4.5: Different stages of bloodstain ellipse fitting

In practice, we discretize the circle and choose a few points from it. We

perform this visibility test for this set of points as we can see for 1 and 5

points in Figure 4.6. Once we have performed the visibility tests for all the

points on the circle, the resultant mask will have a large convex region with

sharp exterior regions. The sharp exterior regions come from the shadows

of the visibility test. Now if we only use the pixels that correspond to edges

in the original mask, they should lie on the ellipse.
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4.3. Ellipse Fitting

(a) Circular Visibility Test (b) Edges in the Original Mask

(c) Initial Edges Remaining after Visibility
Tests

(d) Final Ellipse Fit

Figure 4.6: Final stages of bloodstain ellipse fitting

In Figure 4.6, we see the final visibility test for all the discretized points

on the circle. Many of the regions are jagged regions caused by the visibility

tests, corresponding to shadows. We ignore all the pixels in the mask that

do not correspond to edges of the original mask. We then fit an ellipse to

this set of points.
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4.4. Blood Droplet Parameter Estimation

4.4 Blood Droplet Parameter Estimation

A useful metric which may help determine the velocity of a droplet as well

as the drag coefficient is the droplet’s density. We can estimate the radius

of the droplet given the fitted ellipse, and since the drag coefficient is only

a function of surface area, and the droplets are spherical, we can calculate

the drag.

Suppose we fit an ellipse with minor axis radius r. We can estimate the

volume of the droplet from the equation for the volume of a sphere

V =
4

3
πr3. (4.1)

We also know from Equation 3.8, k = 6πµr which are all known now. We

can also estimate the mass m

m = ρBV, (4.2)

where ρB is the density of the given blood. Now we have enough blood

droplet parameters to estimate the trajectory. However, if we would like

to obtain the impact speed of a droplet as in Section 4.7, it is beneficial to

have a density estimation for the droplet in image space, denoted ρi. This is

formally defined as the thickness of a blood droplet at a given pixel. We can

obtain this information from the Beer-Lambert law. This law states that

for an incoming ray with intensity I0 that passes through a medium with

absorption coefficient α, and thickness l and outgoing ray I1, then
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4.4. Blood Droplet Parameter Estimation

I0 I1

l

α

(a) Beer-Lambert Law Through a Medium

I0

lα

I1

(b) Beer-Lambert Law applied to a blood-
stain

Figure 4.7: The Beer-Lambert Law

I1

I0
= 10−αl. (4.3)

However for our case, light passes through the blood twice, and we get,

I1

I0
= 10−2αl. (4.4)

If we know the input intensity I0 from the rest of the background and

output intensity I1 from the measured value on a blood droplet then, we

can define the image density ρi ≡ l,

I1

I0
= e−2αρi (4.5)

⇒ ln(
I1

I0
) = −2αρi. (4.6)

Rearranging, we obtain the image density equation,

ρi = −
1

2α
ln(

I1

I0
). (4.7)
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4.5. Major Axis Direction Flipping

4.5 Major Axis Direction Flipping

At this point we have shown how to estimate the ellipses from the blood-

stains. However, the impact angle is still ambiguous to a computer. It could

have come from either direction along the major axis. We propose a method

that obtains the correct direction based on the tangent method.

Figure 4.8: Where the tangent method succeeds. Top view of a spatter scene.
For each stain on the floor consider both major axis directions

The tangent method described in Section 2.1 only works accurately for

particles or stains on the floor, as seen in Figure 4.8. If we look back to our

free body diagram, Figure 3.3, there is no force moving it outside of a plane

formed by the drag force, and gravity. Thus, all trajectories projected to

the xy-plane, i.e. the plane perpendicular to gravity, remain lines. This is

why the tangent method works in this case. However, for splatters on walls

or any surface that isn’t coplanar with the ground plane, the tangent fails.

We will consider both directions formed by each of the ellipse major

axes. 2 potential directions from each stain, we include both of them, this

is illustrated in Figure 4.9.
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4.5. Major Axis Direction Flipping

θθ

Figure 4.9: Two separate directions made with major axes of an ellipse

In a practical scene, with many stains, it looks like something from

Figure 4.10. On the left side we have our input stains with varying axes and

angles. We also consider the directions formed by using the opposite major

axis. We then project these direction estimates onto the xy plane, where we

know the trajectories to be linear. We now have two sets of lines in the xy

plane. Since the lines are reflections about the surface, we can solve for two

different points of intersection.

(a) The input an-
gles. Some may
be flipped the wrong
way

(b) All the angles (c) The correct angles

Figure 4.10: The wall axes flipping algorithm. Top view of a spatter scene.
For each stain on the wall with normal facing the right, consider both major
axis directions

If we cluster this data, we will obtain two points of intersection in the

xy-plane. One of the points is in front of the wall, and another virtual one is
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4.5. Major Axis Direction Flipping

behind. Obviously we will choose that in front of the wall. Some scenarios

will not have a plane perpendicular to the ground, in which case the point

that is closer to the plane will be the correct one.

Figure 4.11: An example where the tangent method does not apply for a wall
spatter. Note where the lines intersect all in this region of interest, however
the actual area of origin is off to the right. Down in the image corresponds
to down in world space.

If we were to do the tangent method, without projecting to the xy-plane,

also known as the ground plane, then the height component z may diverge

in the direction of the area of origin. This is more extreme in the case of

particles with parabolic trajectory. In Figure 4.11 is a counterexample where

we cannot use the tangent method to accurately predict the area of origin

from the height component. We are looking at the xz plane, with gravity

pointing downwards in the image. There are droplets with varying plane

angles in the image. Intersecting them like this would form meaningless

lines. However, if we obtain the impact directions for both axes of the
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4.6. Average Velocity Estimation

ellipse, project them to the plane and cluster as described above, we can

obtain the right orientation for the ellipse. Doing this also obtains a linearx

estimate for the xy position of the area of origin.

4.6 Average Velocity Estimation

If we are not interested in individual droplet velocities, we can estimate the

average velocity for all droplets in a given area based on the average size

of all droplets in that area. This is true because at higher velocities, the

surface tension breaks the droplets into smaller ones. Lower velocities allows

for bigger droplets.

4.7 Droplet Velocity Estimation

The velocity can be estimated from the stains as well, though not all too

apccurately. However, these velocities still give an adequate bound to search

the space of possible velocities as described in Section 3.3.4.

If we vary the speed of impact, the splatter size and thus density changes.

If we vary the angle of impact, the splatter size and density changes. Suppose

we have the density of a droplet in image space ρi (not to be confused with

ρB) , speed of impact vI and angle of impact θ (measured to the normal of

the surface), we can constrain the problem. We know that there exists a

maximum density of a droplet of a given size ρmax, which corresponds to a

perfect hemisphere on the surface. This occurs when the angle and speed

of impact are both 0. We also know that as the speed increases, the density

decreases as we’re spreading the droplet over a larger area. As the speed
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4.7. Droplet Velocity Estimation
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(a) A plot for impact velocity vs density
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(b) A plot for the impact angle vs density

Figure 4.12: Velocity and impact angle versus density

approaches infinity, the density approaches zero. Similarly for the angle, as

it approaches π
2 , the stain will smear over an infinite distance and thus the

density becomes zero. We can thus write:

ρ = f(θ, vI), (4.8)

and, f(0, vI) = ρmaxe−AvI , (4.9)

and, f(θ, 0) = ρmax cos(θ). (4.10)

We can thus form f as follows:

f(θ, vI) = ρmax cos(αimpact)e
−AvI . (4.11)

We then solve for an inversion of this, vI = f−1(θ, ρ), which can be
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4.8. Pruning

shown to be

ρ = ρmax cos(θ)e−AvI (4.12)

⇒ ln(ρ) = ln(ρmax cos(θ)) − AvI (4.13)

⇒ AvI = ln(ρmax cos(θ)) − ln(ρ). (4.14)

Divding both sides by A, we denote this as the velocity estimation equation,

vI =
1

A
ln(

ρmax cos(θ)

ρ
), (4.15)

where the value A can be found through experiment. Supposing the exper-

imental data has a large standard deviation in the velocity component, we

can obtain approximations by fitting the vertical means of the data with this

function, and can also encode the vertical standard deviation, which can be

used with the area of origin estimation.

4.8 Pruning

There are many stains in the image, especially with added noise. We get rid

of stains that are either too small and would yield no information, or too

large and are composed of many different stains. There are enough stains

in the image to find good area of origin estimates. We also disallow stains

whose computed main stain is smaller than the satellite stains, which is

usually because of multiple overlapping stains.

Once we obtain a set of ellipses, a lot of them may be outliers. We

perform a random sample concensus, or RANSAC [9], to keep only the
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4.8. Pruning

inliers. The ones that agree on an xy-plane coordinate, are the ones we seek

to keep. For RANSAC we perform over 9000 iterations, looking for at least

20 good stains (which is the amount forensic investigators usually choose for

stain estimates), with varying minimum error dependent on the scale of the

scene.
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Chapter 5

Experiments

In this chapter, we will describe various experiments and validation we have

performed. For all experiments, cow blood was used in substitution of hu-

man blood for various scenarios. The first blood experiment is dropping

blood from various heights impacting at various angles. In Section 5.1, we

determine that our velocity estimation equation 4.15 is feasible. In Sec-

tion 5.2, we recreate various real world scenarios of blood spatter events and

perform our algorithm on the captured data.

5.1 Blood Droplet Experiment

Procedure

In this low velocity experiment, blood was dropped out of an eyedropper at

various heights onto a paper surface, inclined at various angles. The heights

corresponded to different impact velocities evenly spaced out at one every

meter per second. This is illustrated in Figure 5.1. Immediately after the

particle hit the surface, the paper is taken off the inclined surface and put on

a horizontal surface to along with a calibration pattern and photographed.

This calibration pattern is used to warp the image into an orthographic
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5.1. Blood Droplet Experiment

view, to ensure comparable measurement between stains. Manual cropping

was used and the stains were segmented as in Chapter 4. We also computed

the image density from Equation 4.7 for each pixel.

α

h

Figure 5.1: The setup for the blood droplet experiment: varied parameters h
for height, which dictates the impact speed and θ the impact angle.

Results

We did this test for 4 varying angles and 5 varying velocities with 3 tests

per angle-velocity combination. Shown are one of the images from this set

in Figure 5.2.
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5.1. Blood Droplet Experiment

Figure 5.2: Various blood droplet test stains. Horizontal is varying the speed
of impact and vertical is varying the angle of impact

Computed image densities are shown in Figure 5.3. We can see visually

the brightest or most dense images are near the top left, associated with no

angle and very low speed. As we go right or down from there the image

density decreases on average.

Figure 5.3: Computed density images for the blood droplet experiment.
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5.1. Blood Droplet Experiment

We plot the average image density for the region of the bloodstains in

each image in Figure 5.4. If we look at the plot for angles vs. density

in Figure 5.4a, we can see that as the velocity gets higher, the density

approaches zero as stipulated in the velocity estimation equation, 4.15. This

seems to be true for all the different angles we used. If we consider the angles

vs. the density in Figure 5.4b, we see a general decrease as we would with

the cosine function.
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Figure 5.4: Plots comparing angles, velocities versus densities

If we look at at 3D plot of all the data, as in Figure 5.5, we can see the

overall trend better. We also compare it to the theoretical plot for the same

boundaries with value ρmax = 0.7598 and A = 0.1835 with a residual norm

of 0.0850.
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Figure 5.5: 3D plots of density as a function of angles and velocities.
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5.2. Validation Experiments

Figure 5.6: Various computed ellipses for the blood droplet test stains.

Discussion

The estimates resulting from this experiment are plausible. We have shown

that our velocity estimation equation fits the experimental data decently as

seen in Figure 5.5. We also show that our ellipse detection method works

well regardless of satellite stains. However, using a threshold for the mask is

the bottleneck of the process in terms of accuracy and could undergo further

investigation. We can see this in Figure 5.6, the top right ellipse has a poor

fit due to the mask given. All of these ellipses were calculated with the same

threshold.

5.2 Validation Experiments

In this section we will describe three different experimental setups in which

we validate various aspects of our method on real world scenarios. We

project blood at medium to high velocities from a slingshot and paintball
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5.2. Validation Experiments

gun in Sections 5.2.1 and 5.2.2 respectively. Finally, we do a low-medium

velocity impact simulation by hitting a pool of blood with a hammer in

Section 5.2.3.

5.2.1 Slingshot Experiment

In the slingshot experiment, we aim to see how well we can reconstruct the

area of origin. We also also want to use knowledge of the ground truth area

of origin to calculate the impact speeds based on the parabolic trajectory

model by fixing two points of the parabola and a tangent angle at one of

the points. We want to do so to fit Equation 4.15. The slingshot allows us

to test a range of velocities from medium to high in BPA terms.

Procedure

For the slingshot experiment, we mounted a slingshot to a sturdy box. The

payload of the slingshot was a few droplets of cow blood in a bottle cap

attached to the sling. We fired this slingshot at three different speeds onto a

81
2 by 11 inch sheet of paper mounted on a vertical surface. We then moved

the box so that it was the same distance a few feet from the wall as before,

but at a different angle to the paper. We did this for 3 angles and 3 velocity

combinations. The layout is seen in Figure 5.7.
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θ

v

y

x

(a) Top down view of the slingshot setup (b) A photo of the slingshot setup

Figure 5.7: Top down view of the setup for the Slingshot Experiment: θ is
different angles fired at the surface and v is different velocities fired from the
slingshot.

Results

(a) (b)

Figure 5.8: Ellipse fits for slingshot experiment

63



5.2. Validation Experiments

−20 −10 0 10 20 30

−15

−10

−5

0

5

10

15

20

25

30

y

z

(a) Example yz reconstruc-
tion from a slingshot test
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tion from a slingshot test
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(c) Example xy reconstruc-
tion from a slingshot test

Figure 5.9: Results from a slingshot experiment with headon direction
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tion from a slingshot test

−15−10−50

−5

0

5

10

15

20

y
x

z

(c) Example xy reconstruc-
tion from a slingshot test

Figure 5.10: Results from a slingshot experiment with oblique direction

Discussion

Based on these results, we have determined that this experiment was ill-

conditionned. The actual area of origin is a 4-5 feet away, however the lines

converge a few inches away from the surfaces. Our target area was too small

for the distance from the source. We were unable to perform everything

we sought to do in this experiment however, we have determined that our

ellipse fitting works exceptionally well on real world stains. Also, we have

identified a failure case for previous methods as described in Figure 4.11 in

Section 4.5. It should also be noted that the slingshot experiment was not
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very reproducible as the slingshot was hard to pull back to the exact same

position and orientation.

5.2.2 Paintball Gun Experiment

In this experiment, we attempt to accomplish the same goals as in Sec-

tion 5.2.1. We increase the target area, as well as bringing the source closer

to the target. We also use a more controlled device, a paintball gun, which

allows us to control the velocity directly.

If we are to reconstruct the area of origin, we need the camera and scene

to be calibrated properly. That is to say, we need to know accurately on the

computer where the stains are in the real 3D world. Other work, such as

research on scale invariant features, could prove useful to calibrate the scene

without using any markers [13] and using these features matches to obtain

epipolar geometry about the scene is described in [11]. However, the method

described in [20] would probably serve to be more useful as it is tailored for

ellipses, which we know there to be many of in our scene. We have decided

to use calibration markers as we’re dealing with planar surfaces.

Procedure

This is very similar to the slingshot experiment, but instead we used a

paintball gun. specially manufactured paintballs were filled with cow blood

and used for the payload. The gun let us regulate the air pressure, controlling

the muzzle velocity. We force the paintball to hit a potato masher to break

the shell off and allow the blood to continue to travel. We did the test

closer to the target than in Section 5.2.1, as it could not reproduce the
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correct xy area of origin estimate. We also used a large 11 by 17 sheet of

paper to increase the impact area and lessen the error. In this approach

we had the ground plane calibrated with the use of a calibration marker,

leveled properly as well as a different marker for the impact plane. We see

an illustration of the setup in Figure 5.11.

(a) Top down view of
the paintball setup. The
paintball is shot at a
grate, where the paintball
separates and blood con-
tinues to impact the sur-
face

(b) A photo of the paintball setup

Figure 5.11: Setup for the Paintball Experiment: v being different velocities
and θ being different angles fired at the surface.
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Results
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(a) Example yz reconstruc-
tion from a paintball test
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(b) Example xz reconstruc-
tion from a paintball test
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(c) Example xy reconstruc-
tion from a paintball test

Figure 5.12: A paintball experiment result with an oblique impact angle

(a) yz reconstruction (b) xz reconstruction (c) xy reconstruction

Figure 5.13: A paintball experiment result with a head on impact angle
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(b) After Flips

Figure 5.14: The result of flipping ellipse major axis directions

Discussion

Despite our efforts to better condition the experiment, it was still ill-conditionned

and so neither our method nor the tangent method perform well. The lines

converge up to 10 inches away, whereas the actual areas of origin is 3-5 feet

away. Due to complications in the specially manufactured paintballs, where

putting any glue on them to seal them caused misfires, this experiment was

not very reproducible. We therefore moved on to a simpler experiment that

gives us better conditionned directions and positions.

5.2.3 Hammer Experiment

We now will describe the hammer experiment. We know that by hitting a

pool of cow blood with a hammer, there will be stain positions all over a

target area around the pool. This ensures that the stains will come from

every direction in the xy plane, thus ensuring a good estimate for the xy

area of origin as described in Section 3.5. This will allow us to calculate the
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error for our method and the linear method and compare results.

Procedure

In this experiment we hit a pool of blood with a hammer. We varied the

height of an object for 3 different values, and put 10-20 droplets of cow blood

on the object. We proceeded to hit the blood with a hammer at a force high

enough to cover the test area. The test area was composed of 6 sheets of 81
2

by 11 inch sheets of paper arranged in a 2 by 3 sheet array.

h

z

x

Figure 5.15: Setup for the Hammer Experiment: h is the only parameter we
vary, the height of the object. We hit the hammer with enough energy to
cover the whole test area.

Results

In Figures 5.17, 5.18, and 5.19 are the results for the test described above

for heights of 1.25, 5 and 7.25 inches respectively. Each figure shows the

ground truth flight paths (the red paths), the estimated linear estimate (the

black paths) and our estimate (the blue paths) each of the experiments, we

see that our result predicts more accurately the area of origin.

We also show the probability density functions for each region in the xz

and yz cross sections. Although we may not 100% accurately reconstruct

69



5.2. Validation Experiments

the area of origin, it lies in the non-zero probability region of the PDF.
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(a) Input Image (b) Orthogonal Warp of Input Image

(c) Fitted Ellipses

Figure 5.16: Different stages in our system
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Figure 5.17: Results for the 1.25 inch height experiment.

Error Type Linear Method Probabalistic Method

xyz 3.3768 1.1165
xy 0.5116 0.5789
z 3.3378 0.9547

Table 5.1: Error (in inches) for the 1.25 inch experiment.
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Figure 5.18: Results for the 5 inch height experiment.

Error Type Linear Method Probabalistic Method

xyz 4.9281 1.2866
xy 0.9619 1.2567
z 4.8333 0.2756

Table 5.2: Error (in inches) for the 5 inch experiment.
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Figure 5.19: Results for the 7.25 inch height experiment.

Error Type Linear Method Probabalistic Method

xyz 4.5954 2.3687
xy 2.2929 1.6903
z 3.9826 1.6594

Table 5.3: Error (in inches) for the 7.25 inch experiment.
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Figure 5.20: 3D views for the 3 heights.
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Discussion

We can see that we estimate the area of origin accurately. The same re-

construction parameters were used for all three methods, however different

mask thresholds were chosen.

We say accurately, as the z error of our method is comparable to the xy

error of the linear estimate. The xy components of the linear estimate have

undergone validation and are suitably accurate as shown in [1], [5], [12].

For visualization, we plotted the estimated trajectories for all the meth-

ods using parabolic motion. This is why the linear case are not composed

of lines, we use the reconstructed area of origin estimate along with the

direction and position of each stain to form a parabola.

To determine the ground truth area of origin position, we marked a point

of the location on the target plane. We then put the object on which to hit

a blood pool with a hammer centered on this point. We also measured the

height of the object. The planar location gives us the xy coordinates and

the measured height gives us the z coordinate of the area of origin.
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Chapter 6

Conclusions and Future

Work

6.1 Discussion and Limitations

We have described a method of reconstructing the area of origin in a non-

linear manner, whereas no previous works have done so. It works with the

same input data as in existing methods, the stain angles and positions in

3D space.

We have also described a method to robustly calculate the impact angle

given the image of a blood droplet, regardless of satellite stains. Further-

more, we have described a model to estimate blood droplet impact velocities

and error in this estimation. This can be exploited into our probabalistic

model as the deviation in error is an input parameter.

This approach is limited in that we must assume we can accurately

obtain the velocities from the stains, or that the velocities have the same

magnitude. Both have failure cases. The velocity estimation is dependent

on a given stain having all the blood from the associated particle contained

in it. Essentially we have a volume constraint in the stain. This is not true,
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since some droplets may impact at an oblique grazing angle to the surface

and rebound off further down in separate stains. It may also occur that

the velocity of a particle may be so high that it splashes into other nearby

stains. Both of these types of scenarios can be seen in Figure 6.1a.

Also, we decided to use a simplified Gaussian for the particle probability

equation 3.50, where the covariance matrix is a multiple of the identity

matrix. In reality, to accurately estimate the probability, a circular warp of

the Gaussian would be necessary.

(a) Volume loss from either rebound-
ing after hitting an oblique angle or
having a high enough velocity to in-
troduce secondary splatters
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(b) An extreme example where not all
the velocities are similar

Figure 6.1: Different failure cases for our method

The other failure case, that of assuming all velocities are equal or sim-

ilar, is also a falsifiable assumption with extreme cases. Suppose many of

the trajectories are downward pointing from the initial area of origin with

no vertical velocity component, with one that is upward pointing as in Fig-

ure 6.1b. The upward pointing trajectory will have a much higher velocity

than the downward pointing ones. This is an extreme case and would seem

unnatural to have this kind of behaviour in a practical setting.
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Another potential limitation is as with many computer vision approaches,

there are a few parameters to tune. For the reconstruction, we have to tune

the δθ and δv values. For the stain segmentation, manual thresholds were

used to mask the stains, even on a white background. There are also pa-

rameters used in pruning the outliers of the stains using RANSAC.

6.2 Future Work

More controlled tests are needed to accurately estimate velocity based on

stain density and angle, as described in Section 4.7. Also, more thorough

validation of the whole method would also be necessary before using the

presented algorithm in the field. In addition to accurately estimating the

velocities, we could also learn δθ and δv which are essentially the standard

deviation in the angle and speed estimates by comparing it with ground

truth data.

It is not uncommon for forensic scientists to perform mock tests for a

given scene to see if the result is plausible. If one were to want to see

how blood travels through the air as the event occurs, there are various

capture techniques to track this data. Corpetti et al. [6] present an optical

flow technique which specifically tracks fluids using the divergence and curl

properties of a fluid over time. There is also a method to capture fluids

in motion using a stereoscopic camera with dyed water [17]. An additional

mock test could be accurately simulating the blood with a fluid dynamics

simulation. Simulating fluids is no easy task, and is an open area of research.

R. Bridson’s book on the subject [3] describes the approach and difficulties.
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This is appealing as it is less messy than doing tests with actual blood and

more reproducible.

Right now, we have only tested on planar data to ease with calibration,

although with a more rigorous capture setup it could be possible to acquire a

3d textured model of a scene. To estimate the blood droplet angles from ar-

bitrary surfaces would be very beneficial, by maybe using planar projections

of localized mesh patches.

So far we have assumed one splatter event coming from a point source.

If there were multiple events in the scene, or a blood trail, a new approach

would be needed. Instead of calculating the probabilities by multiplication

(an AND operation), we could use addition (an OR operation) and cluster

using this data.

Another assumption we make is that there are only two forces acting

upon an object, drag and gravity. However there may be a vector field such

as for wind affecting the object as it passes through it. This may affect the

outcome of a crime scene or another particle scene such as with shrapnel

from an explosion.
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